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Abstract—Federated Learning (FL) has gained considerable attention recently, as it allows clients to cooperatively train a global
machine learning model without sharing raw data. However, its performance can be compromised due to the high heterogeneity in
clients’ local data distributions, commonly known as Non-IID (non-independent and identically distributed). Moreover, collaboration
among highly dissimilar clients exacerbates this performance degradation. Personalized FL seeks to mitigate this by enabling clients to
collaborate primarily with others who have similar data characteristics, thereby producing personalized models. We noticed that
existing methods for assessing model similarity often do not capture the genuine relevance of client domains. In response, our paper
enhances personalized client collaboration in FL by introducing a metric for domain relevance between clients. Specifically, to facilitate
optimal coalition formation, we measure the marginal contributions of client models using coalition game theory, providing a more
accurate representation of potential client domain relevance within the FL privacy-preserving framework. Based on this metric, we then
adjust each client’s coalition membership and implement a personalized FL aggregation algorithm that is robust to Non-IID data
domain. We provide a theoretical analysis of the algorithm’s convergence and generalization capabilities. Our extensive evaluations on
multiple datasets, including MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100, and under varying Non-IID data distributions
(Pathological and Dirichlet), demonstrate that our personalized collaboration approach consistently outperforms contemporary
benchmarks in terms of accuracy for individual clients.

Index Terms—Personalized Federated Learning, Shapley Value, Coalition Game Theory, Multiwise Collaboration.
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1 INTRODUCTION

W ITH the ongoing advancement of web services, vast
amounts of client data are generated daily, that can

be immediately exploited through machine learning tech-
nology. Indeed, machine learning models, when fueled by
such extensive data, have found applications in a myriad
of contexts, revolutionizing fields like precision medicine
and recommendation systems, to name a few. Within these
applications, the precision and generalizability of models
are paramount, attributes that are enhanced by training on
large data volumes. However, legal constraints, business
confidentiality, and individual privacy concerns prevent
clients from directly sharing data. This leads to the creation
of ”data silos”, limiting the potential enhancement of model
capabilities [1], [2].

Federated Learning (FL) is a distributed machine learn-
ing approach that enables clients to collaboratively train
machine learning models using their local data, without the
need to exchange raw data [3]. Instead, by sharing model
parameters or intermediate results via a central server, data
from different clients can be virtually fused and aligned,
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enabling clients to collaborate and learn from each other.
Importantly, FL strikes a balance between data privacy and
data sharing, embodying the principle that while ”data
remains unseen, it is still accessible” and ”data stays sta-
tionary, but models are exchanged”.

While Federated Learning (FL) offers potential, its client
collaboration often falls short in performance due to the
heterogeneous alignment of data domains across clients
also known as Non-IID data. Recognizing the needs of
the clients, previous studies [4], [5], [6], [7] have investi-
gated the concept of personalized collaboration. Leading
methods like FedFomo [5] and FedAMP [6] promote col-
laboration between client pairs with similar local models.
Precisely, FedFomo gauges similarity through loss metrics,
while FedAMP utilizes model parameter similarity. These
methods operate under the assumption that clients with
analogous models share high relevance and should there-
fore collaborate to enhance performance. However, our
experiments indicate that neither loss nor model similarity
conclusively indicates domain relevance among clients.

Motivation: We rethink the problem of personalized
client collaboration in FL by focusing on measuring do-
main relevance between clients. To elucidate our motivation,
consider the example depicted in Fig. 1. While the ‘cat’ on
client 1 and 2 is domain-relevant in the data domain, the
data domains between client 1 and client n are entirely
unrelated. A core insight from our work is that collabora-
tion between domain-relevant clients boosts performance,
whereas involving unrelated clients can severely degrade
outcomes.

To further certify our above key insight, we conducted
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Fig. 1. Heterogeneous client data domain profiles in an agnostic fed-
erated learning system. client 1 and 2 are domain-relevant since they
both have ‘cat ’, while client 1 and n are domain-irrelevant with no label
overlap. But these domain relevances are agnostic to clients with the
inherent FL privacy protection regulations.

a preliminary experiment using the standard FedAvg Algo-
rithm on MNIST with the following settings. We configured
a setup with a total of 5 clients: A,B,C,D,E, assuming
that the personalized task of client A is the even number
classification, i.e., {0, 2, 4, 6, 8}. The label distribution of
other clients are: B : {0, 2, 4}, C : {6, 8}, D : {1, 3, 5}
and E : {7, 9}. It is very clear that class labels owned by
client B and C overlap with client A. Thus, they (B&C)
are A’s domain-relevant clients, while the other two clients
(D&E) are domain-irrelevant. Subsequently, we devised a
personalized model for client A using the FedAvg algorithm
under two distinct scenarios: In scenario (a), we aggregate
the models of all 5 clients to generate a personalized model
for client A. This scenario encompassed collaborations that
intermingled with domain-irrelevant clients. In scenario (b),
we only aggregate the models from client A, B, and C to
generate a personalized model for client A, concentrating
exclusively on collaboration with domain-relevant counter-
parts. We can observe that the personalized accuracy of user
A converges rapidly within a few communication rounds
when the collaboration is strictly with domain-relevant
clients. Conversely, including domain-irrelevant collabora-
tors in the mix degrades the final personalized accuracy of
user A.

Given the privacy protection requirement in the FL sys-
tem, it’s impossible to directly conduct domain relevance
analysis between clients on the data level, where the only
available medium for information exchange is the model
of each client. Therefore, different from the previous simple
model similarity perspective, this paper introduces coalition
game theory [8] to perform complex analysis on the model
level so that the potential domain relevance at the data level
can be accurately reflected. In this way, we can guarantee
the domain relevance identification, while strictly adhering
to the privacy protection requirement of FL. This theory aids
each client in assessing the marginal contributions made by
other clients’ models to their own personalization process.
The calculation of the average marginal contribution of a
participating client’s model considers all potential combi-
nations of clients within the ongoing personalized coalition.
This computation, also referred to as the Shapley Value (SV),
encapsulates the collaborative impact of each client’s model.

Expanding on this groundwork, we enhance the in-

Fig. 2. The influence of domain relevance on the personalized perfor-
mance of client A (MNIST). We repeat experiments for 5 times (indicated
by different colors) and the black line is their average.

volvement of individual clients in coalitions and present a
personalized FL aggregation algorithm. This algorithm re-
purposes the SV as aggregation weights, effectively steering
the FL training procedure. Notably, this approach showcases
robustness even in scenarios with highly Non-IID data
distributions. We embark on a theoretical analysis of the
convergence and generalization bounds of the proposed al-
gorithm. Additionally, we notice that the local SV evaluation
on each client requires them to download the model of oth-
ers, which raises issues about communication overhead and
privacy. Thus, we further utilize a shared feature extractor
to reduce communication overhead and differential privacy
techniques to protect model privacy.

To the best of our knowledge, this is the first time that
coalition game theory is used as a guiding principle for the
personalized collaboration process within FL. In summary,
the principal contributions of this paper are four-fold:

• We revisit the personalized client collaboration prob-
lem in FL from the perspective of domain relevance
and model this problem as a coalition game.

• We employ the insights from coalition game theory,
particularly the Shapley Value (SV), to aid each client
in identifying domain-relevant collaborators. This is
achieved by assessing the marginal contributions of
other clients to their own personalized performance.

• The SV from domain relevance analysis can be
reused as aggregation weights to steer the FL training
process, which implements a personalized FL ag-
gregation algorithm without any extra information.
The convergence and generalization bounds of the
algorithm are theoretically analyzed.

• We conduct extensive experiments to validate the
performance of our proposed algorithm, pFedSV, on
datasets with different non-IID settings. The results
show that pFedSV outperforms state-of-the-art base-
lines.

2 RELATED WORK

Personalized Federated Learning. Recently, to address the
client data heterogeneity challenge, Personalized Federated
Learning (PFL) is proposed by utilizing the knowledge from
other clients to customize a unique model for themselves,
rather than using the traditional FL method to generate a
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single global model for all, which can significantly improve
the model performance for every client in FL system. A
series of surveys regarding the concept of “PFL” are pro-
posed to summarize and generalize the key challenges and
techniques in this field [9], [10], [11]. Following their novel
insights, we organize the development vein of PFL in recent
years as follows.

Initially, an additional fine-tuning step for the global
model on each client’s local dataset is a natural strategy for
personalization [12], [13], which enables the global model to
fit local data domains. Besides, some previous studies also
attempted to enhance the robustness of global model under
severe data non-IID level. They tried to add regularization
term [14] or proximal term [15] to constraint the update
of global model, which keeps the robust to all heteroge-
neous clients However, their methods are all based on the
adjustment of a single global model scheme, which cannot
satisfy the personalized demand of individual clients at the
local data level, as the target distribution of clients in severe
data Non-IID setting can be fairly different from the global
average aggregation [16]. Therefore, a part of work, such as
pFedHN, considers directly generating personalized param-
eters for each client’s model [4]. While most other works try
to promote collaboration between different clients to achieve
mutual progress, FedFomo [5] and FedAMP [6] follow a
similar idea that encourages pairwise collaboration among
clients with similar model features, where the former uses
loss similarity and the latter adopts parameter similarity.
Clients who have higher similarity in these model features
will be assigned higher aggregation weights, rather than
the previous average. Moreover, considering the relevance
of different clients, the cluster-based PFL techniques are
proposed to group users with similar model features into
a common subset, e.g., FedEM [17] and IFCA [18]. The
basic idea of IFCA is to alternate between estimating the
cluster identities and minimizing the loss functions based
on the uploaded local models. FedEM is based on a flexible
assumption that each local data distribution is a mixture
of unknown underlying distributions. However, the cluster-
based methods are limited since no knowledge is exchanged
across clusters, where the extreme case is that each client
forms a cluster with itself only.

Although the above collaboration methods have
achieved good results, they still do not capture the essence
of PFL: 1) Each client wants to collaborate with others
who are truly relevant at the local data level, not model
similarity. 2) Model aggregation is a multiwise process. Only
considering pairwise relationships ignores the intertwined
interactions among models. Thus, We introduce SV from
coalition game theory to help each client accurately identify
their domain-relevant collaborators with privacy guarantee,
by complex marginal contribution analysis. Furthermore,
the SV can also be reused as personalized model aggregation
weights for each client.

Shapley Value for Federated Learning. The conven-
tional FL framework is a multi-party architecture where
clients collaboratively train a shared global model with
data privacy protection. Considering the heterogeneity of
clients in terms of data domain, hardware, resources, etc.,
the contribution of different clients to the single shared
global model varies significantly, which is also very difficult

to precisely quantify them. As a fair contribution evaluation
metric, the Shapley Value from the cooperation game theory
[19] can successfully solve this problem by measuring the
marginal contribution of collaborators on the final outcome,
where its calculation process considers the final results
under various different combinations of collaborators.

Therefore, it’s widely applied in various multi-party
collaboration scenarios, such as FL. Wang et al. use SV in FL
for various applications: 1) they measure the contribution of
different clients for fair credit allocation [20], and 2) they
quantify the importance of different features to the final
prediction [21]. Song et al. achieve a fair profit allocation
for clients in FL by using SV as the contribution index [22].
Furthermore, Yu et al. also utilizes the fair property of SV to
design an incentive mechanism in FL [23].

However, they mainly utilize the desirable properties of
SV to ensure the fairness of their contribution evaluation
on different clients, but ignore that SV as a meaningful
quantitative metric, can also guide the training process of
FL. Some other works also notice that SV can be a effective
guidance for typical FL training. Nagalapatti et al. propose
to use SV-based model aggregation on heterogeneous client
models to obtain a global model with higher performance
[24]. Sun et al. present an adaptive SV-based weighting
mechanism for the robustness of FL [25].

However, these works cannot be well generalized to the
PFL scenario, since their server’s general dataset can only
enable global SV evaluation. The personalized SV evalua-
tion requires local client data as metric, which is a significant
challenge under FL data protection principle. In our work,
the SV evaluation of the final model performance can help
analyze the underlying data quality of different clients,
without disclosing any data privacy. Besides, SV can also
be reused as personalized aggregation weight to enhance
model robustness against Non-IID data distribution.

3 THE ESSENCE OF PFL PROBLEM

3.1 Problem Formulation

Before the problem analysis, we first introduce the objectives
of PFL and the corresponding problem formulation [1], [26].
PFL aims to customize personalized models for each client
to accommodate their private data distribution through
collaboration between a set of clients. Considering n clients
C1, C2, · · · , Cn with the same structure of model M but
parameterized by different weights θ1, θ2, · · · , θn, their re-
spective personalized models can be denoted by M(θi).
Unlike traditional federated learning, the private dataset Di

of each client i is uniformly sampled from their own distinct
data distribution Pi. Let ℓi denote the corresponding loss
function for client i, and Li the average loss over the private
dataset Di is denoted by Li(θi) =

1
di

∑
j∈Di

ℓi(j, θi), where
di is the data size of Di and j is one of the data samples in
Di. The optimization objective of PFL is

Θ∗ = argmin
Θ

1

n

∑n

i=1
Li(θi), (1)

where Θ is the set of personalized model parameter {θi}ni=1.
Next, we will delve into the root causes of the problems
through various pre-experiments analysis and present our
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Fig. 3. The validation of model similarity theory for domain relevance
identification, where the table shows the ground truth of client label
distribution and the bar chart shows the model difference ||θA − θi||2
between client A and other client i ∈ {N}.

Pairwise collaboration

Multiwise collaboration

0.82

0.84

0.86

0.88

0.9

Multiwise
collaboration

Pairwise
collaboration

No
collaboration

Mean Testing Accuracy (MTA) of 
all Clients

Fig. 4. The schematic of Multiwise vs. Pairwise collaboration and the
experiment results on CIFAR-10 dataset with the pathological Non-IID
setting.

multiwise collaboration solution: Shapley value, to address
these problems.

3.2 Root Causes of PFL Problems

Domain Relevance. According to extensive previous work
for data Non-IID problem in FL [15], [26], [27], [28], the
model performance degradation is due to the client data
domain heterogeneity. However, the inherent data privacy
protection of FL makes it difficult to identify other domain-
relevant clients, when facing an agnostic system. Since the
client models are the only communication intermediary in
this situation, previous work directly adopts one-to-one
model similarity test to represent domain relevance, i.e.,
clients with higher model similarity will be regarded as
having higher domain relevance. But, there are some flaws
lurking behind this theory, which can cause wrong identi-
fication. In the table of Fig. 3, we show the ground truth
of all client label distribution, where the data distribution
is pathological Non-IID partition on CIFAR-10 dataset, and
numbers 0 ∼ 9 represent the index of different labels. Take
client A with labels [0, 1] as an example, client B with
labels [1, 2] and client C with labels [0, 3] are its domain-
relevant clients, since them both have overlap label of A.
We use Euclidean distance, i.e., ||θA − θi||2, i ∈ {N}, to
measure the model difference between client A and other
clients in Fig. 3. If the theory is true, the model differences
of B and C should be the smallest among all clients, i.e.,
||θA − θB ||2 ≈ ||θA − θC ||2 < ||θA − θi||2, i ∈ N \ {B,C},
while the results in Fig. 3 are not consistent with it.

Multiwise Collaboration Weights. Another key-point
is the personalized model aggregation within the coalition

to generate client-specific model. The previous methods
adopted pairwise collaboration by comparing model simi-
larities one-to-one and assigning proportional aggregation
weights based on their magnitudes, which is demonstrated
in Fig. 4. However, imagine a scenario where the client’s
current model is a carriage, and every other client’s model
is a force that moves the carriage in a certain direction,
and the destination of the carriage is the client’s optimal
personalized model. Obviously, the movement of carriage
is the result of multiple forces combination, which indicates
that the multiwise influences among collaborators must be
considered when generating the personalized model aggre-
gation weights. Under the same conditions that each client
is informed in advance about respective domain-relevant
clients, we conduct extensive experiments, where the only
variable is the collaboration methods among clients when
generating aggregated weights. The results in Fig. 4 indi-
cating that multiwise collaboration outperforms pairwise
collaboration.

3.3 Domain-relevant Coalition Formation and Personal-
ized Model Generation
3.3.1 Preliminaries of SV
Consider each client as a player in the coalition game,
where N = {1, 2, · · · , n} denotes the set of players. A
utility function v(S) : 2n → R assigns to every coalition
S ⊆ N a real number representing the gain obtained by
the coalition as a whole. By convention, we assume that
v(∅) = 0. Formally, let π ∈ Π(N) denote a permutation
of clients in N , and Cπ(i) = {j ∈ π : π(j) < π(i)} is a
coalition containing all predecessors of client i in π. The SV
of client i is defined as the average marginal contribution to
all possible coalitions Cπ(i) formed by other clients:

φi(v) =
1

|N |!
∑

π∈Π
[v(Cπ(i) ∪ {i})− v(Cπ(i))]. (2)

The formula in (2) can also be rewritten as:

φi(v) =
∑

S⊆N\{i}

|S|!(|N | − |S| − 1)!

|N |!
[v(S ∪ {i})− v(S)].

(3)
The SV has several desirable and unique properties, which
can achieve domain-relevant coalition formation for each
client and perform personalized model generation in the
coalition.

3.3.2 SV for Domain Relevance
• Symmetry: Two clients who have the same contribu-

tion to the coalition should have the same value.
That is, if client i and j are equivalent in the sense
of v(S ∪ {i}) = v(S ∪ {j}),∀S ⊆ N \ {i, j}, then
φi = φj .

• Null Player: Client with zero marginal contributions
to all possible coalitions is null player and receive
zero payoff, i.e., φi = 0 if v(S ∪ {i}) = 0 for all
S ⊆ N \ {i}.

The Symmetry and Null Player properties in SV can as-
sist each client in precisely identifying their own domain-
relevant clients, where those irrelevant clients will be iden-
tified as null Player.
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The workflow of domain-relevant client identification is
introduced below: in each communication round t, each
client i will first upload their local updated model θti to
the server, forming a model pool {θti}ni=1 on the server-side.
Next, they will download other clients’ models from the
model pool to construct their own domain-relevant coali-
tion, and then perform personalized model aggregation.
However, in the agnostic federated learning system, not
all clients are available at the beginning, which means the
members of domain-relevant coalition is dynamical recon-
structed during the training.

First, we construct a model download vector for each
client based on the relevance score, that is, for each client
i, i ∈ N , it generates an n-dimensional relevance vector
ϕi,t = [ϕi,t

1 , · · · , ϕi,t
n ], where ϕi,t

j denotes the relevance score
of client j to i in t-th round and we have ϕi,t=0 = 0⃗.
We choose to download the models of those clients with
top-k relevance score in the vector (Note: they randomly
download k other clients’ models in the first round since it’s
initialized as a all-zero vector). Then, each client can form
a personalized coalition set St

i,k, which contains the client
indexes of its own and those downloaded. Now, client i can
perform SV evaluation in its personalized coalition St

i,k, by
using the following coalition game and the local validation
dataset DVi . We define a coalition game ({θtj}j∈St

i,k
, v),

where v is a utility function that assigns a value to each
client subset X ⊆ St

i,k. Here, we define the value as the
performance A of the model θtX generated from X on the
validation dataset DVi

as follows.

θtX =
1

|X|
∑

j∈X
θtj , and v(X,DVi

) = A(θtX ,DVi
). (4)

Then, we can obtain the SV φt
j , j ∈ St

i,k of all clients
in the personalized coalition St

i,k from the coalition game
({θtj}j∈St

i,k
, v) in t-th round according to Eq. (2). Next, client

i updates the relevance score of its relevance vector to ϕi,t+1

as below:

ϕi,t+1
j = αϕi,t

j + (1− α)φt
j ,∀j ∈ St

i,k. (5)

Intuitively, a larger relevance score of client j means that
it contributes more to the personalized performance of client
i, and thus has a higher likelihood of being its domain-
relevant client. Besides, we notice that the relevance vector
is unstable in the initial few rounds because not all models
of domain-relevant clients can be downloaded. It requires
several rounds of iterative updates to screen them with the
top-k scheme as below. By definition, when other clients’
models negatively affect the personalized performance in
the coalition game, its SV can be negative, so the irrelevant
clients’ scores will rapidly decrease to negative in the iter-
ations and thus be excluded. For example, if client i has 2
domain-relevant clients in total 20 clients and it downloads
top-5 other clients’ models per round, then it takes at most
5 rounds to identify all domain-relevant clients. The conver-
gence analysis of Dynamic Top-k Download Mechanism is
elaborated later in Section 4.2.

Dynamic top-k download mechanism: to reduce communi-
cation overhead, the download number k in each round

can be dynamically adjusted. With iterative updates, only
domain-relevant clients can remain positive relevance score,
so when the number of clients with positive score does
not match the current value k, we dynamically adjust it
to ensure that all downloads are for the necessary domain-
relevant clients.

3.3.3 SV for Multiwise Collaboration Weights

• Group Rationality: The gain of the entire coalition S
is completely distributed among all clients in S, i.e.,
v(S) =

∑
i∈S φi.

• Linearity: The values under multiple utilities sum up
to the value under a utility that is the sum of all these
utilities: φi(v) + φi(u) = φi(v + u). Also, for every
i ∈ N and any real number a, it has φi(av) = aφi(v).

The Group Rationality and Linearity properties perfectly fit
the demand of personalized model aggregation with mul-
tiwise collaboration in the coalition. According to Eq. (2),
the computation of SV requires exploring extensive permu-
tations among clients within the coalition game, hence the
process naturally considers the complex multiwise influ-
ences on the final results. Furthermore, the Group Rationality
property guarantees that the target of all clients within the
coalition is the same, i.e., to achieve the best performance
for the current client i, which also means the optimal
personalized model parameters. And the Linearity property
naturally fits into the model aggregation process, i.e., the
improvement of personalized accuracy by aggregating other
client models into their own is fully reflected in the SV of the
model, where a larger positive SV indicates a larger positive
contribution to performance improvement and vise verse.

Based on the SV φt
j of all clients j ∈ St

i,k in Eq. (5),
the downloaded models are assigned a real number that
represents their marginal contribution to the personalization
of the current client i, where a positive number indicates a
positive effect and vice versa. Therefore, we first need to
exclude those models of irrelevant clients with negative SV
out of the multiwise collaboration in current round, and
only compute the weights for remaining domain-relevant
clients within the coalition as follows:

wt
j =

max(φt
j , 0)

∥θti − θtj∥
, (6)

where we adopt the model differences ∥θti − θtj∥ to further
fine-tune the resulting weights. Then, we perform 0-1 nor-
malization on the previous weights to obtain their person-

alized aggregation weights wt∗
j =

wt
j∑

j wt
j

, which maintains

wt∗
j ∈ [0, 1] and

∑
j w

t∗
j = 1. Finally, we generate the

personalized model of client i in t-th round based on the
following multiwise collaboration:

θt∗i =
∑

j
wt∗

j θtj , ∀j ∈ St
i,k. (7)

Note that we perform SV evaluations in each round to
accommodate small changes in multiwise influences due to
parameter changes after client local model training.
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4 THE PFEDSV ALGORITHM

Based on the above solution frame, we propose our pFedSV
Algorithm, where the whole workflow is demonstrated in
Algorithm 1 and 2. In the beginning, each client initialize
their model parameters θi and the relevance vector ϕi (Line
1-2). Then in each round t, they update the model param-
eters to θti by E local epochs training and upload them to
the server (Line 5). Next, they download k copies of other
clients’ model parameters according to the dynamic top-k
download mechanism (Line 6). At this point, the basic con-
ditions of each client’s coalition game for their own model
personalization are available. First, they form a coalition
game ({θtj}j∈St

i,k
, v), where St

i,k is the model parameter set
consisting of k downloaded model parameters and their
own (Line 7). Then, the SV evaluation process is performed
to obtain the SV of each model parameters in St

i,k (Line
8), which will be elaborated in Algorithm 2 later. Next, the
obtained SV are used to address two challenges: updating
the relevance vector of each client for identifying their
domain-relevant clients (Line 9), and calculating the mul-
tiwise aggregation weights for model personalization (Line
10). Finally, each client performs the respective weighted
aggregation to obtain new model parameters as the starting
point for the next round t + 1. The current Algorithm 1 is
based on the original whole model downloading, the further
version of Algorithm with global feature extractor will be
provided in the Appendix.

Since the time complexity required to accurately evaluate
SV is exponential to the number of players, we need an ap-
proximation algorithm to make the trade-off. According to
Eq. (2), the calculation of SV can be viewed as an expectation
calculation problem, so we adopt a widely accepted Monte
Carlo sampling technique to approximate the SV [29], [30],
[31]. The related details are elaborated in Algorithm 2. First,
we randomly sample R permutations of St

i,k out of total
|St

i,k|! permutations to form a set P (Line 1). Then, for each
permutation, we scan it from the first element to the last and
calculate the marginal contribution for every newly added
model parameters (Line 3-5). Perform the same procedure
for all R permutations and the approximation of SV is the
average of R calculated marginal contributions (Line 6). As
the number of samples R gradually increases, Monte Carlo
sampling will eventually be an unbiased estimate of the SV.

4.1 Convergence of SV Evaluation Approximation.

The computation complexity for precise SV evaluation is
exponential to the number of players. According to Eq. (2),
the computation process can be viewed as an expectation
calculation problem, thus the Monte Carlo sampling tech-
nique can be used to approximate the SV. It will converge to
an unbiased estimate of the SV as the increasing of sampling
number R. It’s proofed that R = 3|St

i,k| ≪ |St
i,k|! Monte

Carlo sampling number is sufficient for convergence, with a
small approximation bound ϵ > 0 [31].

4.2 Convergence Analysis of Dynamic Top-k Download
Mechanism

Assume that there are total n clients with 100% partici-
pation, the local data distributions of these clients follow

Algorithm 1 Shapley value based Personalized federated
learning on whole model (pFedSV)
Input: n, N , {θi}ni=1, k, E, T , R and DVi

.
Output: {θ∗i }ni=1: clients’ personalized model parameters.

1: Initialize the clients’ model parameters {θi}ni=1. 2
2: Initialize clients’ relevence vector: ϕi,t=1 = 0⃗, ∀i ∈ N .
3: for round t = 1, 2, · · · , T do
4: for client i = 1, 2, · · · , n do
5: update its model parameter to θti via E local epochs

and upload to the server.
6: download k copies of other clients’ model parame-

ters from server with the dynamic top-k download
mechanism.

7: St
i,k ← θti ∪ {k downloaded model parameters}.

8: φt
j ⇐ SV evaluation(St

i,k,DVi , R), ∀j ∈ St
i,k.

{Details in Algorithm 2}
9: ϕi,t+1

j = αϕi,t
j + (1− α)φt

j ,∀j ∈ St
i,k

10: wt∗
j =

wt
j∑

j wt
j
⇐ wt

j =
max(φt

j ,0)

∥θt
i−θt

j∥
, ∀j ∈ St

i,k.

11: θt∗i =
∑

j w
t∗
j θtj ,∀j ∈ St

i,k.
12: end for
13: end for

Algorithm 2 Shapley value evaluation

Input: St
i,k, DVi

, R.
Output: φt

j ,∀j ∈ St
i,k.

1: P ← set of R permutations of St
i,k.

2: for client j ∈ St
i,k do

3: for permutation p ∈ P do
4: Xt

p,j = {l|l ∈ St
i,k ∧ p(l) ≤ j}

5: apj ← v({Xt
p,j ∪ j},DVi)− v(Xt

p,j ,DVi)

6: φt
j ← φt

j +
1
|P |a

p
j .

7: end for
8: end for

the pathological data Non-IID setting, where each client is
randomly assigned m types of labels. An example of client
label distribution on the CIFAR-10 dataset with m = 2
is shown in Fig. 3 for reference. Domain heterogeneity is
defined as each client’s label distribution is different, while
domain relevance is defined as there are same class labels
between different clients. Therefore, we can observe from
the ground truth of Fig. 3 that each client has m other
domain-relevant clients in this setting from an omniscient
perspective.

Suppose that the initial model download number for
each client is k. Then, we provide the convergence proof
of our dynamic top-k download mechanism. Take the per-
sonalization process of client A as an example, there are
two conditions for the settings of hyperparameters m and k
(m < k or m > k), and we will explain them one by one.

When m < k: In the first round, each client will ran-
domly download k copies of other clients’ models from
the server-side and there are various (Ck

n) possible model
combinations.

• For the best case, other m domain-related clients’
models are all included in the initial k copies, that
is for ∀i ∈ {m}, we have i ∈ {k}. Thus, we can
identify all domain-relevant clients of client A in the
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Fig. 5. The modified federated learning workflow is based on model splitting, where the model of each user is divided into a feature extractor and
classifier. The server only generates a global shared feature extractor among different users while maintaining their personalized classifiers.

first round, where the SV of the domain-relevant
clients is positive and the domain-irrelevant clients
are negative.

• For the worst case, none of the m domain-related
models is included in the first k copies, that is for
∀i ∈ {m}, we have i /∈ {k}. Next, we proof the
maximum number of rounds that is required to iden-
tify the m domain-relevant clients from all n clients
when the worst case occurs in each round. For the
first round, since k copies of models are all from the
domain-irrelevant clients, their SV will be negative
in the evaluation process, which makes their rele-
vance score be negative after updating. Therefore,
according to the top-k rule, these clients will not
be selected in the next round because the relevant
scores of other clients who have never been selected
are the initial 0, which is larger than negative scores.
The worst case will continue until a certain round
t, which satisfies tk > n − m − 1 (1 is client A
itself). It means that in round t, we have excluded
all domain-irrelevant clients with negative SV, and
the remaining clients are all domain-relevant clients.
Since k > m (they are both integers), we have
(t+1)k = tk+k > n−m−1+k > n+(k−m−1) ≥ n,
which means that we must be able to find all domain-
relevant clients in the next round t + 1. Finally, we
prove that it takes at most ⌈n−m−1

k ⌉ + 1 round to
identify all other domain-relevant clients.

When m > k, following the similar logic as above, we
can get the subsequent convergence proof.

• For the best case, since m > k, we cannot include
all m domain-relevant clients in the first round with
only k downloaded models. Therefore, the process
will continue until all clients are scanned by once.
Thus, we need ⌈mk ⌉ round to identify all domain-
relevant clients.

• For the worst case, we need ⌈n−m−1
k ⌉ rounds to

exclude all domain-irrelevant clients and then we
still need up to ⌈mk ⌉ rounds to identify all domain-
relevant clients. Finally, it takes at most ⌈n−m−1

k ⌉ +
⌈mk ⌉ rounds.

Normally, to ensure efficient traversal, we will set a large
value of k at the beginning. Although a large k leads to a
large communication overhead in the beginning, it can help
the client rapidly scan all other clients and converge to a
specific value k = m, which is equal to the number of other
domain-relevant clients.

4.3 Convergence Analysis of pFedSV.

We proof that pFedSV can assist each client converge to their
respective local optimums under the following assump-
tions: 1) L1, · · · ,Ln are all µ-strongly-convex, 2) L1, · · · ,Ln

are all L-smooth, 3) the variance of stochastic gradients in
each client is bounded by σ2

i and 4) the expected squared
norm of stochastic gradients is uniformly bounded by G2.

Theorem 1. Let all above assumptions hold and µ,L, σi, G
are defined therein. Choose κ = L

µ , γ = max{8κ,E} and the
learning rate ηt = 2

µ(γ+t) . Then, each client in pFedSV satisfies

E[Li(θi)]− L∗
i ≤

κ

γ + T − 1

(
2B

µ
+

µγ

2
E∥θ1i − θ∗i ∥2

)
(8)

The full version about the convergence analysis of
pFedSV algorithm will be elaborated in the Appendix.

4.4 Generalization Bounds of pFedSV.

In this section, We theoretically prove that the performance
of pFedSV can outperform conventional FedAvg algorithm
and local training only, through the theorem from domain
adaptation [32].

Theorem 2. For each client i ∈ N , we denote its local dis-
tribution and empirical distribution as Di and D̂i. The model
parameters learned on D̂i is denoted by θD̂i

. Then we have

LDi

(∑
j
wt∗

D̂j
θtD̂j

)
≤ LDi

(
1

n

∑
j
θtD̂j

)

≤ LD̂i
(θD̂i

) +
1

n

∑
j

(
1

2
d(Di,Dj) + ξj

)
+

√
log 2n

δ

2m

(9)
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where wt∗
D̂j

is the SV-based aggregation weight, d(·)
measures the distribution discrepancy between two distri-
butions, m is the number of samples per local distribution
and ξj is the minimum of the combined loss LD̂i

+ LD̂j
.

The details of generalization bounds are elaborated in the
Appendix.

5 COMMUNICATION OVERHEAD REDUCTION &
MODEL PRIVACY PROTECTION

Since each user needs to download many model copies
of other users to perform their local SV evaluation in
our pFedSV algorithm, we are also aware of the potential
communication overhead increase and model privacy issues
arising from this model downloading process, and provide
solid solutions to address them in this section.

5.1 Communication Overhead Reduction
Except for the top-k dynamic mechanism in 3.3.2, we further
exploit the advantage of a global shared feature extractor be-
tween users to reduce the communication overhead. Specif-
ically, for different learning tasks (i.e., image classification
and next word prediction), the model can be divided into
two parts: feature extractor and classifier, where the former
has a generic function for all users, and the latter is unique
for different user’s local data domains [7]. According to
the latest research [33], they measure the Centered Kernel
Alignment (CKA) similarity between the representations
from the same layer of different clients’ local models, on
standard CNN [34]. The observation is clear: comparing
different layers in the local models learned on different
clients, the similarity of feature extractors among different
client local models is very high, while the classifiers have
the lowest similarity

Therefore, for the personalization of each user, the most
important thing they need to focus on is the classifier of
other users, while the feature extractor part can be shared.
Following this insight, each user only needs to download
one global shared feature extractor and several classifiers of
other users to reduce the communication overhead, not the
whole model before. And the whole model of other users
can be reconstructed by replacing different classifiers. The
modified federated learning workflow is demonstrated in
Fig.5.

Nevertheless, since our pFedSV is a general personal-
ization algorithm for different learning tasks, other classical
techniques, such as model quantification and compression,
can also be applied for further communication reduction.

5.2 Model Privacy Protection
For the issue of model privacy, we have achieved anonymity
by removing any information related to the client’s identity
from the downloaded models during the entire process of
pFedSV. Since the model itself may still imply client private
data information in these parameters, we design a more
effective privacy protection method, by adopting the (ϵ, δ)-
differential privacy (DP) to address the privacy issue in
our scenario [35]. We add Gaussian noise into the model
parameters after client’s local training process, which can
guarantee the model with DP.

Fig. 6. The visualization of Dirichlet data Non-IID setting on MNIST,
where x-axis indicates the client index, y-axis indicates the label index,
and the size of scattered points indicates the number of training samples
owned by the client.

In brief, DP ensures that, given two nearly identical
datasets, querying one dataset produces results with nearly
the same probability as querying the other, which is under
the control of δ and ϵ. In particular, the DP in our scenario
can reduce the connection between the local dataset and
the trained model parameters. More noise makes the model
more private at the cost of performance and we conduct
extensive experiments to illustrate whether pFedSV can
retain its performance with more privacy protection (add
more noise). The experiment results in the later section
indicate that, under an appropriate DP noise (δ = 1),
the performance of our pFedSV algorithm with DP-based
Noise Addition can still outperform all other personalized
baselines.

6 EXPERIMENTS

6.1 Experimental Setup
In this section, we will show all the experiment setups,
including hyperparameter settings, datasets, baselines, etc.

6.1.1 Dataset, Model & Machine Configurations
Based on prior work [36], [37], we conduct our experiments
on the following datasets: MNIST [34], Fashion-MNIST (F-
MNIST) [38], CIFAR-10 [39], and CIFAR-100. For the model
structure on different datasets, We use the same CNN
architecture as in [36]. All our experiments are run on
the following machine configurations: CPU (i9-10900K) and
GPU (one RTX 3090).

6.1.2 Baselines & Evaluation Metric.
We evaluate the performance of pFedSV by comparing it
with the state-of-the-art PFL algorithms, including pFedMe
[14], pFedHN [4], FedFomo [5] and FedAMP [6]. For a more
comprehensive understanding, we also compare with the
classical single global model methods FedAvg [3], FedAvg
with fine-tuning (FedAvg+FT) and FedProx [15], as well as
the simplest separate local training named separate, where
each client individually train their own model without col-
laboration. The performance of all algorithms is evaluated
by the mean testing accuracy (MTA), which is the average
of the testing accuracy on all clients, and the ± indicates the
error range of the MTA after 5 repeated experiments.
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TABLE 1
The MTA with the pathological Non-IID data setting, where bold indicates the best result among all methods. 10 clients with 100% and 100 clients

with 10% participation in each round.

Methods MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 96.11± 0.28 93.27± 3.68 92.35± 0.43 91.42± 2.69 84.15± 2.13 75.57± 4.08 73.57± 5.13 68.57± 4.25

FedAvg 91.74± 1.68 78.46± 1.14 90.31± 2.49 75.63± 4.73 57.67± 4.16 44.64± 4.75 50.57± 3.71 43.16± 4.68
FedProx 90.12± 0.73 78.45± 1.83 90.16± 3.05 78.83± 3.49 55.68± 2.67 45.75± 4.39 49.21± 3.69 41.08± 5.27

IFCA 92.86± 1.57 86.73± 2.05 90.01± 2.38 82.63± 3.59 71.69± 3.25 60.23± 3.94 61.37± 4.16 52.44± 4.68
FedEM 95.05± 1.28 91.53± 1.87 92.27± 2.68 87.61± 4.07 82.38± 3.56 71.42± 5.07 72.39± 5.76 62.84± 4.28

FedAvg+FT 94.38± 1.06 90.51± 1.67 91.18± 3.54 89.49± 4.51 81.34± 3.24 70.13± 5.68 71.08± 5.14 64.38± 4.69
pFedMe 93.75± 1.34 86.57± 2.61 92.46± 1.72 85.39± 2.97 80.48± 4.59 70.15± 5.86 71.56± 4.79 60.85± 5.26
FedFomo 96.90± 0.87 93.71± 2.05 94.10± 0.65 92.78± 1.92 85.93± 3.02 74.36± 2.15 76.89± 3.54 69.21± 4.37
FedAMP 95.82± 1.37 92.59± 1.88 93.26± 2.14 91.46± 2.04 84.32± 3.69 72.91± 2.83 75.38± 3.19 67.02± 4.15
pFedHN 96.53± 0.84 94.16± 1.38 94.97± 0.86 93.69± 1.58 86.38± 2.72 76.62± 3.05 77.24± 3.86 70.58± 4.57

pFedSV(Ours) 98.01± 0.83 96.94± 1.75 96.16± 0.58 94.68± 2.36 89.64± 1.88 80.65± 3.78 80.57± 4.37 72.61± 4.73

TABLE 2
The MTA with the Dirichlet Non-IID data setting (α = 0.1) on different datasets, where bold indicates the best result among all methods. 10 clients

with 100% and 100 clients with 10% participation in each round.

Methods MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 74.05± 2.11 59.81± 5.73 60.18± 6.42 58.22± 6.73 40.53± 7.20 36.15± 6.88 35.43± 3.87 30.05± 5.49

FedAvg 43.57± 3.75 30.15± 4.82 40.58± 4.16 36.49± 5.07 33.81± 5.07 26.82± 6.43 26.17± 4.27 20.33± 5.27
FedProx 47.49± 4.18 44.76± 5.49 43.09± 4.82 40.34± 4.72 35.76± 5.18 29.91± 5.58 29.62± 5.13 23.27± 4.69

IFCA 58.67± 2.69 54.58± 3.79 56.29± 4.16 51.04± 4.38 43.09± 4.88 40.67± 4.86 39.28± 4.11 31.89± 4.20
FedEM 66.53± 2.74 60.28± 4.05 61.79± 3.62 57.41± 4.28 51.09± 4.58 45.82± 5.07 41.39± 3.76 35.88± 4.61

FedAvg+FT 65.72± 3.84 55.57± 4.26 57.27± 4.13 52.83± 5.01 43.42± 5.29 40.05± 5.22 36.33± 3.86 32.55± 4.37
pFedMe 64.39± 4.08 58.02± 3.51 60.27± 3.59 56.81± 4.01 50.73± 4.29 44.21± 5.09 40.29± 3.57 34.94± 3.78
FedFomo 72.54± 2.18 63.07± 2.54 64.75± 3.42 60.49± 3.72 53.83± 4.57 48.35± 5.29 45.91± 3.06 37.51± 3.09
FedAMP 70.15± 3.02 60.28± 3.11 62.28± 2.53 58.94± 3.14 51.57± 4.03 46.05± 4.48 43.67± 3.55 36.40± 3.76
pFedHN 73.35± 2.04 62.57± 4.11 62.95± 3.44 59.55± 4.15 52.82± 3.88 47.19± 5.83 45.33± 3.45 37.38± 3.77

pFedSV(Ours) 78.17± 1.59 70.76± 2.41 71.47± 1.86 66.63± 2.03 61.18± 1.67 56.76± 1.85 50.46± 2.47 42.25± 3.13

6.1.3 Non-IID Data Setting.
For each used dataset, we adopt two different Non-IID data
settings as follows: • The pathological Non-IID data setting:
each client is randomly assigned two types of labels and the
privacy data is not similar between any two clients, which
is shown as the Table in Fig. 4. (20 types of labels per client
on CIFAR-100 with 10 clients) • The Dirichlet Non-IID data
setting Dir(α), which uses different α values to adjust the
data Non-IID level. A small α means high data heterogene-
ity, that is, it makes the client label distribution more biased
[40], and vice versa. To provide a clear understanding, the
visualization of the Dirichlet setting with different α values
on clients’ data heterogeneity is shown as in Fig. 6.

6.1.4 Implementation details.
We consider two FL scenarios with different client scales:
total 10 clients with 100% participation and total 100 clients
with 10% participation. We set the training parameters as
5 local epochs, the same number of communication rounds
(20 rounds for the former and 100 rounds for the latter),
and learning rates (0.01 for MNIST and FMNIST, 0.1 for
CIFAR-10). For the SV related hyper-parameters, we set the
Monte Carlo sampling number as R = 3|St

i,k|, where the
number of model parameters downloaded for each round is
k = 5 in the beginning. Note that k is dynamically adjusted

according to the dynamic top-k download mechanism in
SV for domain relevance of Sec. 3.3. The open source will be
available in GitHub after the acceptance (URL).

6.2 Performance Analysis
In this section, we will demonstrate the performance of our
pFedSV compared to all the state-of-the-art benchmarks and
analyze the experiment results in detail.

6.2.1 Results on the different Non-IID data setting.
Table 1 demonstrate the MTA of all methods with the
pathological Non-IID data setting. Since each client has
only two types of labels, which significantly simplifies the
complexity of the classification task for each client, the
high performance of separate on all datasets reflects the
simplicity. However, the pathological Non-IID data setting
is a great challenge for the single global model methods,
we can observe that FedAvg and FedProx suffer from sig-
nificant performance degradation on all datasets, since its
global aggregation will contain models of domain-irrelevant
clients and thus lead to severe instability in the gradient
optimization process [41]. For the other PFL methods, Fe-
dAvg+FT, pFedMe, FedFomo, FedAMP, pFedHN and our
pFedSV all realize a promising performance on all datasets.
FedAvg+FT takes several local fine-tuning steps to tune
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the poor global model back to adapt the local Non-IID
data distribution. The pFedMe proposes novel regularized
loss functions based on Moreau envelopes to decouple the
personalized optimization from the global model learning.
The pFedHN is more specific in that it directly generates
personalized parameters for each client’s model through
another hypernetwork. The good performance of FedFomo
and FedAMP are achieved by adaptively encourage more
pairwise collaboration between clients with similar models
to form their own personalized model. Our pFedSV can out-
perform all other baselines since it considers the multiwise
influences among clients to help them identify their domain-
relevant coalition and generate personalized aggregation
weights with multiwise collaboration.

Table 2 illustrates the MTA of all methods on the Dirich-
let Non-IID data setting (α = 0.1). As we know from the
visualization in Fig. 3, this setting (Dirichlet α = 0.1) is
much more challenge than pathological, which is reflected
in the significant performance reduction of all methods.
Nevertheless, our pFedSV is still guaranteed to outperform
all other baselines. Please note that the low accuracy in Table
2 with 100 clients scale is due to only 10% participation in
each round.

6.2.2 Relevance score & Multiwise collaboration weights.
The superior performance of pFedSV on domain relevance
identification comes from the various desirable properties
of SV, Fig. 7 visualize the relevance vector ϕi of each client
after convergence on different algorithms, where FedFomo
uses the model similarity-based weights to update the rele-
vance vector, while pFedSV use the computed SV from its
local model coalition game. To illustrate the effectiveness
of pFedSV algorithm, we also demonstrate the visualized
ground-truth of client relevance according to the client label
distribution table obtained from the omniscience perspec-
tive. Obviously, it is evident from ground-truth that sym-
metry is an important property of the client relevance ma-
trix. Our pFedSV can perfectly identify all domain-relevant
clients and assigns aggregation weights with multiwise
collaboration in the coalition, while the FedFomo cannot
guarantee a precise relevance identification.

6.3 Communication Overhead & Model Privacy

6.3.1 Communication Overhead Reduction
We have two different mechanisms in our paper to reduce
the communication overhead: dynamic top-k download
mechanism and shared common feature extractor. There-
fore, to compare the communication overhead under dif-
ferent cases, we adopt the following baselines:

1) pFedSV (D+C): It means we adopt both the Dynamic
top-k download mechanism and Common feature
extractor in pFedSV to reduce the communication
overhead.

2) pFedSV (D): It means we only adopt the Dynamic
top-k download mechanism in the main content to
reduce the communication overhead.

3) FedFomo: It downloads the whole model of other
clients and performs personalization on the local side
of each client [5].

4) FedAMP: it performs the personalization on the
server side and directly distributes the personalized
model to each client, whose communication over-
head is equal to FedAvg [6].

5) FedAvg: traditional FL algorithm that downloads
one global model to each client [3].

All algorithms are implemented with the following se-
tups: total 20 communication rounds, 10 clients with 100%
participation in each round, pathological Non-IID data dis-
tribution. We use the number of model parameters that
are required in upload and download as the measurement
metric for communication overhead.

In Fig. 8, we show the communication overhead compar-
ison of different baselines on the LeNet-5 Model. Besides,
to further illustrate the effectiveness of our Top-k dynamic
download mechanism and shared common feature extractor
in communication overhead reduction, we also compute
the communication overhead comparison on other different
models, including ResNet-V1-34-layer(Plain) in Fig. 9 and
VGG-19 in Fig. 10.

You can find that the communication overhead of
pFedSV at ResNet case is almost the same as traditional
FedAvg. The reason is that, as a powerful pre-trained model,
most model parameters in ResNet are the convolutional
layer-based feature extractor, and the classifier-related pa-
rameters only account for 2.3% of the overall model param-
eter number. Thus using a shared common feature extractor
can significantly save extensive communication overhead.
In contrast, for traditional CNN model such as LeNet-5, the
classifier-related parameters can account for 49.57% of the
overall model parameter number. Therefore, with the help
of shared feature extractor, the additional communication
can be significantly reduced in ResNet case. Moreover, the
results on VGG-19 are for your additional reference, where
the classifier-related parameters can account for 89.74% of
the overall model parameter number in VGG-19.

As expected, the communication overhead of FedFomo
is much higher than other algorithms. Our dynamic down-
load mechanism can efficiently reduce it by rapidly identi-
fying the domain-relevant clients and adjusting the model
download number, which is illustrated in the main content.
Besides, the introduced common feature extractor can fur-
ther reduce the communication overhead in the download
part. Finally, FedAMP has the same communication over-
head as FedAvg. Although the communication overhead of
our pFedSV (D+C) is not the lowest compared to FedAMP,
we can achieve higher personalized performance for each
client, which is an acceptable trade-off.

6.3.2 Model Privacy Protection
We consider a task with the pathological data Non-IID
setting on CIFAR-10 and CIFAR-100 dataset, with 10 clients
and 100% participation at each round. We compare pFedSV
with the FedAvg under different levels of Gaussian noise
σ, and all other parameters are fixed. The results in Table.4
indicates that a higher σ leads to improved privacy (lower
ϵ) at the cost of decreased performance (bold in the table).
The experiment results in Table 4 have shown that adding
aggressive noise will cause accuracy reduction (from 84.73%
to 78.29%). However, adopting an appropriate noise (δ = 1)
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Fig. 7. The left chart shows the client label distribution obtained from the omniscience perspective. Right side is the visualization of clients’ relevance
matrix ϕi, i ∈ N on different algorithms with the pathological MNIST Non-IID setting after convergence. x-axis and y-axis is the client index.

TABLE 3
The MTA comparison of pFedSV with DP-based noise addition and some selected baselines (other omitted baselines can refer to Table 2). The

experiments are conducted with Dirichlet Non-IID data setting (α = 0.1). 10 clients with 100% and 100 clients with 10% participation. We
emphasize our pFedSV and the pFedSV+DP in bold.

Methods MNIST FMNIST CIFAR-10 CIFAR-100

10 clients 100 clients 10 clients 100 clients 10 clients 100 clients 10 clients 100 clients

Seperate 74.05± 2.11 59.81± 5.73 60.18± 6.42 58.22± 6.73 40.53± 7.20 36.15± 6.88 35.43± 3.87 30.05± 5.49

FedAvg 43.57± 3.75 30.15± 4.82 40.58± 4.16 36.49± 5.07 33.81± 5.07 26.82± 6.43 26.17± 4.27 20.33± 5.27

FedFomo 72.54± 2.18 63.07± 2.54 64.75± 3.42 60.49± 3.72 53.83± 4.57 48.35± 5.29 45.91± 3.06 37.51± 3.09
FedAMP 70.15± 3.02 60.28± 3.11 62.28± 2.53 58.94± 3.14 51.57± 4.03 46.05± 4.48 43.67± 3.55 36.40± 3.76

pFedSV(Ours) 78.17± 1.59 70.76± 2.41 71.47± 1.86 66.63± 2.03 61.18± 1.67 56.76± 1.85 50.46± 2.47 42.25± 3.13
pFedSV+DP 76.58± 1.32 68.43± 1.86 69.24± 2.07 65.31± 1.95 57.94± 2.53 53.28± 1.66 48.37± 2.51 40.79± 2.84

Fig. 8. LeNet-5: Communication overhead comparison on LeNet-5 with
different algorithms. The y-axis indicates the number of model parame-
ters in the communication.

Fig. 9. ResNet: Communication overhead comparison on ResNet-V1-
34-layer(Plain) with different algorithms. The y-axis indicates the num-
ber of model parameters in the communication.

can also protect the model privacy with only a minor impact
on accuracy (from 84.73% to 82.16%). We also conduct
additional experiments to show that, under an appropriate
noise (δ = 1), the performance of our pFedSV+DP can still
outperform other personalized baselines, where the results
can be found in Table 3. Therefore, the DP-based methods
are still effective in solving privacy issues, which are widely

Fig. 10. VGG-19: Communication overhead comparison on VGG-19
with different algorithms. The y-axis indicates the number of model
parameters in the communication.

TABLE 4
The results of pFedSV with DP, which illustrates that we can maintain

the personalized accuracy with a reasonable privacy budget.

Methods δ σ
CIFAR-10 CIFAR-100

ϵ Accuracy ϵ Accuracy

FedAvg 1× 10−5 0 ∞ 19.68± 1.76 ∞ 5.21± 0.41
FedAvg 1× 10−5 1 11.28± 0.32 17.54± 1.37 8.47± 0.67 5.03± 0.24
FedAvg 1× 10−5 2 3.64± 0.13 15.97± 1.53 2.56± 0.19 4.37± 0.19

pFedSV 1× 10−5 0 ∞ 84.73± 1.67 ∞ 31.07± 1.22
pFedSV 1× 10−5 1 5.97± 0.11 82.16± 1.55 8.42± 0.71 30.59± 1.06
pFedSV 1× 10−5 2 1.82± 0.05 78.29± 1.63 1.80± 0.16 23.44± 0.89

validated by many works.
Besides, the key privacy issue concern of our pFedSV

algorithm comes from the fact that the local model of
each client will be downloaded to other clients, since the
recent research [42], [43], [44] on model inversion attacks
shows that malicious attackers can recover the raw training
data from the model through the gradients only. Therefore,
to further demonstrate the effectiveness of our DP-based
noise addition on privacy protection, we conduct an extra
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Fig. 11. The model inversion attack results on the original model and
the model with DP noise addition (δ = 1) on the CIFAR-10 dataset. The
top column is the original model, where the attacker can recover the raw
training data with the shared model parameters. The bottom column is
the model with DP noise addition, where the attack failed.

experiment with model inversion attack on both the original
local model and the model with DP-based noise addition,
where the results are illustrated in Fig. 11. We can see that
the attacker cannot recover the raw training data after we
add the DP-based noise into the original model.

7 CONCLUSION

In this paper, we focus on the model personalization of
clients with heterogeneous domains in an agnostic federated
learning system. we propose pFedSV, a novel personalized
FL algorithm that incorporates the Shapley value from coali-
tion game theory to assess intricate, multi-faceted influences
by quantifying the individual contributions of each client.
We provide a complex analysis by formulating the model
aggregation process as a coalition game, which not only
helps form the personalized domain-relevant coalition but
also serves as personalized aggregation weights for each
client. Extensive experiments are conducted to demonstrate
the effectiveness of pFedSV and the results empirically
illustrate its superiority through the significant improve-
ment on personalized accuracy. Furthermore, regarding the
communication overhead and model privacy issues raised
by the local model download mechanism in pFedSV, we
introduce the shared common feature extractor and the DP-
based noise addition, respectively.
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